CHEMICAL COMPOSITIONS AND ANTIBACTERIAL ACTIVITIES OF ESSENTIAL OILS OF FIVE AROMATIC PLANTS AGAINST PLANT PATHOGENIC BACTERIAL DISEASE AGENTS

Main Article Content

Yusuf GÜMÜŞ
Soner SOYLU
Merve KARA
Musa TÜRKMEN

Abstract

In this present study, the antibacterial activity and the chemical composition of essential oils from five aromatic plants (Helichrysum italicum, Inula graveolens, Cistus creticus, Echinacea purpurea and Hypericum perforatum) growing in Hatay Province of Turkey were determined. The antibacterial activity of essential oils was tested by disc diffusion method against two different economically important plant bacterial disease agents such as bean halo blight disease agent Pseudomonas syringae pv. phaseolicola and potato soft rot disease agent Pectobacterium carotovorum subsp. carotovorum. The essential oils of five aromatic plants were analyzed by gas chromatography/mass spectrometry (GC/MS). According to GC-MS analysis, 50 components were identified in H. italicum, 42 components in I. graveolens, 48 components in C. creticus, 40 components in E. purpurea and 44 components in H. perforatum. Following GC-MS analysis, neryl acetate (27.17%) and α-pinene (12.3%) in H. italicum, fenchyl (bornyl) acetate (50.33%) and borneol (36.95%) in I. graveolens, α-pinene (19.44%) in C. creticus, caryophyllene oxide (16.94%), α-pinene (16.54%) and carvacrol (6.53%) in E. purpurea and α-pinene (32.15%) in H. perforatum were determined as main components. Based on inhibition zone, the highest antibacterial activities were displayed by H. italicum and H. perforatum EOs against P. syringae pv. phaseolicola (19.33-12.33 mm), respectively. The highest antibacterial activities against P. carotovorum subsp. carotovorum was shown by H. perforatum EO (14.33 mm) followed by C. creticus (10.67 mm) EO. Based on our results, the essential oil of aromatic plants collected from Hatay province has the potential to be applied against important plant bacterial disease agents.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Adams, R. (2001). Essential oil components by quadrupole GC/MS. Allured Publishing Corp. Carol Stream, IL.
Agrios, G. (2005). Plant Pathology. San Diego, CA: Elsevier.
Bakkali, F., Averbeck, S., Averbeck, D., & Waomar, M. (2008). Biological effects of essential oils-a review. Food and Chemical Toxicology, 46, 446.
Bouchekouk, C., Kara, F. Z., Tail, G., Saidi, F., & Benabdelkader, T. (2019). Essential oil composition and antibacterial activity of Pteridium aquilinum (L.) Kuhn. Biologia Futura, 70(1), 56-61.
Bozkurt, İ. A., Soylu, S., Kara, M., & Soylu, E. M. (20209. Chemical composition and antibacterial activity of essential oils isolated from medicinal plants against gall forming plant pathogenic bacterial disease agents. KSU J. Agric. Nat., 23(6), 1474-1482.
Burt, S. (20049. Essential oils: Their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94, 223.
Cadena, M. B., Preston, G. M., Van der Hoorn, R. A. L., Townley, H. E., & Thompson, I. P. (2018). Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 122, 582-590.
Camele, I., Gruľová, D., & Elshafie, H. S. (2021). Chemical composition and antimicrobial properties of Mentha × piperita cv. 'Kristinka' essential oil. Plants (Basel), 10(8), 1567.
Della Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., Scognamiglio, M. R., & Caputo, L. (2019). Antimicrobial and phytotoxic activity of Origanum heracleoticum and O. majorana essential oils growing in Cilento (Southern Italy). Molecules, 24(14), 2576.
Demetzos, C., Katerinopoulos, H., Kouvarakis, A., Stratigakis, N., Loukis, A., Ekonomakis, C., Spiliotis, V., Tsaknis, J. (1997). Composition and antimicrobial activity of the essential oil of Cistus creticus subsp. eriocephalus. Planta Medica, 63(5), 477-479.
Diraz, E., Karaman, Ş., & Koca, N. (2012). Fatty acid and essential oil composition of Echinacea purpurea (L.) Moench, growing in Kahramanmaras-Turkey. International Conference on Environmental and Biological Sciences (ICEBS'2012) December 21-22, 2012 Bangkok (Thailand).
Djenane, D., Yanguela, J., Gomez, D., & Roncales, P. (2012). Perspectives on the use of essential oils as antimicrobials against Campylobacter jejuni Cect 7572 in retail chicken meats packaged in microaerobic atmosphere. Journal of Food Safety, 32(1), 37-47.
Dzamic, A. M., Mileski, K. S., Ciric, A. D., Ristic, M. S., Sokovic, M. D., & Marin, P. D. (2019). Essential oil composition, antioxidant and antimicrobial properties of essential oil and deodorized extracts of Helichrysum italicum (Roth) G. Don. Journal of Essential Oil Bearing Plants, 22(2), 493-503.
Elshafie, H. S., Caputo, L., De Martino, L., Gruľová, D., Zheljazkov, V. Z., De Feo, V., & Camele, I. (2020). Biological investigations of essential oils extracted from three Juniperus species and evaluation of their antimicrobial, antioxidant and cytotoxic activities. Journal of Applied Microbiology, 129(5), 1261-1271.
Elshafie, H. S., Ghanney, N., Mang, S. M., Ferchichi, A., & Camele, I. (2016). An in vitro attempt for controlling severe phytopathogens and human pathogens using essential oils from mediterranean plants of genus Schinus. Journal of Medicinal Food, 19(3), 266-73.
Elshafie, H. S., Gruľová, D., Baranová, B., Caputo, L., De Martino, L., Sedlák, V., Camele, I., & De Feo, V. (2019). Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules, 24(7), 1206.
Horváth, G., Jámbor, N., Végh, A., Böszörményi, A., Lemberkovics, É., Héthelyi, É., Kovács, K., & Kocsis, B. (2010). Antimicrobial activity of essential oils: the possibilities of TLC–bioautography†. Flavour and Fragrance Journal, 25, 178-182.
Jianu, C., Golet, I., Misca, C., Jianu, A. M., Pop, G., & Gruia, A. T. (2016). Antimicrobial properties and chemical composition of essential oils isolated from six medicinal plants grown in Romania against foodborne pathogens. Revista de Chimie, 67(6), 1056-1061.
Mengulluoglu, M., & Soylu, S. (2012). Antibacterial activities of essential oils from several medicinal plants against the seed-borne bacterial disease agent Acidovorax avenae subsp. citrulli. Research on Crops, 13, 641-646.
Metin, S., & Bicer, Z. I. (2020). Antibacterial activity of some essential oils againts Vagococcus salmoninarum. Su Ürünleri Dergisi, 37(2), 167-173.
Moleriu, L., Jianu, C., Bujanca, G., Doros, G., Misca, C., Ilie, O. C., Moleriu, R. D., & Ilie, A. C. (2017). Essential oil of Hypericum perforatum the chemical composition and antimicrobial activity. Revista de Chimie, 68(4), 687-692.
Mollova, S., Fidan, H., Antonova, D., Bozhilov, D., Stanev, S., Kostova, I., & Stoyanova, A. (2020). Chemical composition and antimicrobial and antioxidant activity of Helichrysum italicum (Roth) G. Don subspecies essential oils. Turkish Journal of Agriculture and Forestry, 44(4), 371-378.
Nguyen, K. A., Förster, H., & Adaskaveg, J. E. (2018). Efficacy of copper and new bactericides for managing olive knot in California. Plant Disease, 102, 892-898.
Sellem, I., Chakchouk-Mtibaa, A., Zaghden, H., Smaoui, S., Ennouri, K., & Mellouli, L. (2020). Harvesting season dependent variation in chemical composition and biological activities of the essential oil obtained from Inula graveolens (L.) grown in Chebba (Tunisia) salt marsh. Arabian Journal of Chemistry, 13(3), 4835-4845.
Sharifi-Rad, M., Mnayer, D., Morais-Braga, M. F. B., Carneiro, J. N. P., Bezerra, C. F., Coutinho, H. D. M., Salehi, B., Martorell, M., del Mar Contreras, M., Soltani-Nejad, A., Uribe, Y. A. H., Yousaf, Z., Iriti, M., & Sharifi-Rad, J. (2018). Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytotherapy Research, 32(9), 1653-1663.
Sivropoulou, A., Kokkini, S., Lanaras T., & Arsenakis, M. (1995). Antimicrobial activity of mint essential oils. Journal of Agricultural and Food Chemistry, 43(9), 2384-2388.
Skoric, M., Ciric, A., Budimir, S., Janosevic, D., Andelkovic, B., Todosijevic, M., Todorovic, S., Sokovic, M., Glamoclija, J., Tesevic, V., Gasic, U., Misic, D., & Kanellis, A. K. (2022). Bioactivity-guided identification and isolation of a major antimicrobial compound in Cistus creticus subsp. creticus leaves and resin “ladano”. Industrial Crops and Products, 184, Article Number: 114992.
Sundin, G. W., Castiblanco, L. F., Yuan, X., Zeng, Q., & Yang, C. H. (2016). Bacterial disease management: challenges, experience, innovation and future prospects, Molecular Plant Pathology, 17, 1506-1518.
Umarusman, M. A., Aysan, Y., & Ozguven, M. (2019). Farklı bitki ekstraktlarının bezelye bakteriyel yaprak yanıklığına (Pseudomonas syringae pv. pisi) antibakteriyel etkilerinin araştırılması. Tekirdağ Ziraat Fakültesi Dergisi, 16(3), 297-314.