DETERMINATION OF SELENIUM IN SELECTED FOODS FROM NORTH MACEDONIA BY ETAAS FOLLOWED BY MICROWAVE-ASSISTED DIGESTION

##plugins.themes.bootstrap3.article.main##

Pece Sherovski
Natasha Ristovska
Jane Bogdanov
Trajče Stafilov

Апстракт

For the determination of selenium in selected food products produced or purchased in North Macedonia, a suitable electrothermal atomic absorption method (ETAAS) was optimized and validated due to its biological activity and importance in human and animal nutrition. In this study, a sample preparation method with microwave digestion was used to digest various food samples for Se determination. The limit of detection (LOD) and limit of quantification (LOQ) were 0.99 µg/L and 3.30 µg/L, respectively. The validation results showed a recovery of 96.13-99.60%, and the relative standard deviation (RSD) was less than 5.3%. It was found that the determined selenium content was lower compared to the values reported from other Balkan countries. The highest Se content was found in protein-rich foods such as fish muscle of an endemic species of Lake Ohrid trout, then in pork, chicken breast and offal; the content in nuts, beans, milk and dairy products was average, while grain-based samples, fruits and vegetables had the lowest Se concentration.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Рубрика
Articles

Референци

Beale, A. M., Fasulo, D. A., & Craigmill, A. L. (1990). Effects of oral and parenteral selenium supplements on residues in meat, milk and eggs. Reviews of Environmental Contamination and Toxicology, 115, 125-150. https://doi.org/10.1007/978-1-4612-3416-6_4
Brown, K., & Arthur, J. (2001). Selenium, selenoproteins and human health: a review. Public Health Nutrition, 4(2b), 593–599. https://doi.org/10.1079/PHN2001143
Butcher, D. J. (2021). Innovations and developments in graphite furnace atomic absorption spectrometry (GFAAS). Applied Spectroscopy Reviews, 2021, 1–18.
https://doi.org/10.1080/05704928.2021.1919896.
Cena, H., & Calder, P. C. (2020). Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients, 12(2), 334.
https://doi.org/10.3390/nu12020334
Chirita, L., Covaci, E., Mot, A., Ponta, M., Gandea, A., & Frentiu, T. (2021). Determination of selenium in food and environmental samples by hydride generation high-resolution continuum source quartz furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 36(2), 267–272. https://doi.org/10.1039/D0JA00460J
Finley, J. W. (2006). Bioavailability of selenium from foods. Nutrition Reviews, 64(3), 146 –151. https://doi.org/10.1111/j.1753-4887.2006.tb00198.x
Galbraith, M. L., Vorachek, W. R., Estill, C. T., Whanger, P. D., Bobe, G., Davis, T. Z., & Hall, J. A. (2016). Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biological Trace Element Research, 171(2), 338–343.
https://doi.org/10.1007/s12011-015-0560-8
Gjorgovska, N., Filev, K., & Levkov, V., & Kostadinov, T. (2012). The effect of different levels of selenium in feed on egg production, egg quality and selenium content in yolk. Lucrări Ştiinţifice, Seria Zootehnie, 57, 270-274.
Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology, 28(3), 667–695. https://doi.org/10.1007/s10787-020-00690-x
I˙nam, R., Yılmaz, E., & Icin H. (2006) Differential pulse polarographic determination of selenium(IV) using 3,4-diaminobenzoic acid. Asian Journal of Chemistry, 18, 275-284.
Ivory, K., & Nicoletti, D. (2017). Selenium is a source of aliment and ailment: do we need more?. Trends in Food Science & Technology, 62, 190–193.
https://doi.org/10.1016/j.tifs.2016.11.012
Klapec, T., Mandić, M. L., Grgić, J., Primorac, L., Perl, A., & Krstanović, V. (2004). Selenium in selected foods grown or purchased in eastern Croatia. Food Chemistry, 85(3), 445–452. https://doi.org/10.1016/j.foodchem.2003.07.031
Krustev, S., Angelova, V., & Zaprjanova, P. (2019). Selenium content in agricultural soils and wheat from the Balkan Peninsula. International Journal of Advanced Research in Biological Sciences, 12, 229-232. https://doi.org/10.5281/zenodo.3462113
Legrain, Y., Touat-Hamici, Z., & Chavatte, L. (2014). Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts. Journal of Biological Chemistry, 289(9), 6299–6310. https://doi.org/10.1074/jbc.M113.526863
Montesbayon, M., Molet, M., Gonzales, E., & Sanzmebel, A. (2006). Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Allium sativum and Brassica juncea) and Se speciation by HPLC-ICP-MS. Talanta, 68(4), 1287–1293. https://doi.org/10.1016/j.talanta.2005.07.040
Morris, J., & Crane, S. (2013). Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients, 5(4), 1024–1057. https://doi.org/10.3390/nu5041024
Noël, L., Leblanc, J. C., & Guérin T. (2003) Determination of several elements in duplicate meals from catering establishments using closed vessel microwave digestion with inductively coupled plasma mass spectrometry detection: estimation of daily dietary intake. Food Additives & Contaminants, 20, 44-56. https://doi.org/10.1080/0265203021000031573
Pappa, E. C., Pappas, A. C., & Surai, P. F. (2006). Selenium content in selected foods from the Greek market and estimation of the daily intake. Science of The Total Environment, 372(1), 100–108. https://doi.org/10.1016/j.scitotenv.2006.08.008
Pavlovic, Z., Miletic, I., Zekovic, M., Nikolic, M., & Glibetic, M. (2018). Impact of selenium addition to animal feeds on human seleniumstatus in Serbia. Nutrients, 10(2), 225. https://doi.org/10.3390/nu10020225
Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9
Sherovski, P., Ristovska, N., Bogdanov, J., & Stafilov, T. (2022). Optimisation and validation of a method for determination of selenium in human plasma and blood by ETAAS and its clinical application. Bulgarian Chemical Communications, 54 (3), 303-309. http://doi.org/10.34049/bcc.54.3.5473
Shi, L., Ren, Y., Zhang, C., Yue, W., & Lei, F. (2018). Effects of organic selenium (Se-enriched yeast) supplementation in gestation diet on antioxidant status, hormone profil and haemato-biochemical parameters in Taihang Black Goats. Animal Feed Science and Technology, 238, 57–65. http://doi.org/10.1016/j.anifeedsci.2018.02.004
Shridhar, G., Rajendr, N., Murigendr, H., Shridevi, P., Prasad, M., Mujeeb, M. A., Arun, S., Neeraj, D., Vikas, S., Suneel, D., & Vijay, K. (2015). Modern diet and its impact on human health. Journal of Nutrition & Food Sciences, 05(06), 460. https://doi.org/10.4172/2155-9600.1000430
Silva, V. M., Boleta, E. H. M., Lanza, M. G. D. B., Lavres, J., Martins, J. T., Santos, E. F., dos Santos, F. L. M., Putti, F. F., Junior, E. F., White, P. J., Broadley, M. R., Carvalho, H. W. P. de, & Reis, A. R. dos. (2018). Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environmental and Experimental Botany, 150, 172–182. https://doi.org/10.1016/j.envexpbot.2018.03.020
Smrkolj, P., Pograjc, L., Hlastanribi, C., & Stibilj, V. (2005). Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chemistry, 90(4), 691–697. https://doi.org/10.1016/j.foodchem.2004.04.028
Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175(1–3), 896–914.
https://doi.org/10.1016/j.jhazmat.2009.10.094
Sun, M., Liu, G., & Wu, Q. (2013). Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction. Food Chemistry, 141(1), 66–71. https://doi.org/10.1016/j.foodchem.2013.03.002
Tórtora-Pérez, J. L. (2010). The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Research, 89(2-3), 185-192.
https://doi.org/10.1016/j.smallrumres.2009.12.042
Ventura, M. G., Stibilj, V., Freitas, M. do C., & Pacheco, A. M. G. (2009). Determination of ultratrace levels of selenium in fruit and vegetable samples grown and consumed in Portugal. Food Chemistry, 115(1), 200–206. https://doi.org/10.1016/j.foodchem.2008.10.089
Ventura, M., Melo, M., & Carrilho, F. (2017). Selenium and thyroid disease: From pathophysiology to treatment. International Journal of Endocrinology, 2017, 1–9. https://doi.org/10.1155/2017/1297658
Voica, C., Dehelean, A., Haydee, & K. M. (2012). The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples, AIP Conference Proceedings, 1425, 110-113.
https://doi.org/10.1063/1.3681979
Vrhovnik, P., Arrebola, J. P., Serafimovski, T., Dolenec, T., Šmuc, N. R., Dolenec, M., & Mutch, E. (2013). Potentially toxic contamination of sediments, water and two animal species in Lake Kalimanci, FYR Macedonia. Relevance to human health. Environmental Pollution, 180, 92–100. https://doi.org/10.1016/j.envpol.2013.05.004
Wen, X., Zhang, Y., Li, C., Fang, X., & Zhang, X. (2014). Comparison of rapidly synergistic cloud point extraction and ultrasound-assisted cloud point extraction for trace selenium coupled with spectrophotometric determination. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123, 200–205. https://doi.org/10.1016/j.saa.2013.12.074
Yang, L., Maxwell, P., & Mester, Z. (2013). Microwave-assisted acid digestion protocol for the determination of methionine and selenomethionine in selenium-enriched yeast by species specific isotope dilution GC-MS, Analytical Methods, 5, 525-529.
https://doi.org/10.1039/C2AY25498K