LETTUCE (LACTUCA SATIVA L.) - THE NEGLECTED VEGETABLE IN THE MACE DONIAN PRODUCTION AND TRADE
##plugins.themes.bootstrap3.article.main##
Апстракт
Although vegetable production plays a significant role with over 30% of the total crop production output in the Republic of North Macedonia, only a couple of vegetables are treated with due diligence: tomato, pepper (most of it intended for processing), cucumber, and cabbage. Fifteen other vegetables can be found in different data sources, but lettuce is not among them. The only source about the cultivation area and quantity of production is the Ministry of Agriculture Forestry and Water Economy, but this information defers largely from the one that can be obtained from FAOstat. In both cases, the values are negligible low, i.e., below 20 ha in total. In this paper, we have tried to present the realistic status and trends of lettuce import, export, and consumption over ten years and deduct from there the volume and the origin of lettuce production. The results indicate that over 80% percent of the lettuce that is sold on the markets comes from uncertain cultivation practices, especially concerning food safety standards. Considering that lettuce has a tendency to accumulate nitrates, along with microbiological threats, it makes the whole picture even more complex. We propose some soil-less cultivation methods that can be easily adopted by the growers and result in more efficient and safe production.
Downloads
##plugins.themes.bootstrap3.article.details##
Референци
Avgoustaki, D. D., & Xydis, G. (2020). Plant factories in the water-food-energy Nexus era: a systematic bibliographical review. Food Security, 12(2), 253–268. https://doi.org/10.1007/s12571-019-01003-z
Balliu, A., Zheng, Y., Sallaku, G., Fernández, J. A., Gruda, N. S., & Tuzel, Y. (2021). Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae, 7(8). https://doi.org/10.3390/horticulturae7080243
Barbosa, G. L., Almeida Gadelha, F. D., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., Wohlleb, G. M., & Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. Conventional agricultural methods. International Journal of Environmental Research and Public Health, 12(6), 6879–6891. https://doi.org/10.3390/ijerph120606879
Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q. and Cheng, R. (2020). foods A Review of Environment E ff ects on Nitrate Controlled Environments. Foods, 9(6), 732.
Bogevska, Z., Berjan, S., Bilali, H. EL, Sadegh Allahyari, M., Radosavac, A., & Davitkovska, M. (2022). Exploring food shopping, consumption and waste habits in North Macedonia during the COVID-19 pandemic. Socio-Economic Planning Sciences, 101150. https://doi.org/10.1016/J.SEPS.2021.101150
Changmai, T., Gertphol, S., & Chulak, P. (2018). Smart Hydroponic Lettuce Farm using Internet of Things. 2018 10th International Conference on Knowledge and Smart Technology: Cybernetics in the Next Decades, KST 2018, 231–236. https://doi.org/10.1109/KST.2018.8426141
Conversa, G., Bonasia, A., Lazzizera, C., La Rotonda, P., & Elia, A. (2021). Reduction of Nitrate Content in Baby-Leaf Lettuce and Cichorium endivia Through the Soilless Cultivation System, Electrical Conductivity and Management of Nutrient Solution. Frontiers in Plant Science, 12(April). https://doi.org/10.3389/fpls.2021.645671
Hamilton, J. M., & Fonseca, J. M. (2010). Effect of saline irrigation water on antioxidants in three hydroponically grown leafy vegetables: Diplotaxis tenuifolia, eruca sativa, and lepidium sativum. HortScience, 45(4), 546–552. https://doi.org/10.21273/hortsci.45.4.546
Kappel, N., Boros, I. F., Ravelombola, F. S., & Sipos, L. (2021). Ec sensitivity of hydroponically-grown lettuce (Lactuca sativa l.) types in terms of nitrate accumulation. Agriculture (Switzerland), 11(4), 1–12. https://doi.org/10.3390/agriculture11040315
Kern, W., Tapia, M. L., Escalona, V. H., & Lizana, L. A. (2016). Comparative evaluation of water footprint and produce losses in “Española” lettuce cultivated under hydroponic and conventional soil systems. Acta Horticulturae, 1141, 257–262. https://doi.org/10.17660/ActaHortic.2016.1141.31
Kinoshita, T., Yamazaki, H., Inamoto, K., & Yamazaki, H. (2016). Analysis of yield components and dry matter production in a simplified soilless tomato culture system by using controlled-release fertilizers during summer-winter greenhouse production. Scientia Horticulturae, 202, 17–24. https://doi.org/10.1016/j.scienta.2016.02.019
Koyama, R., Itoh, H., Kimura, S., Morioka, A., & Uno, Y. (2012). Augmentation of antioxidant Constituents by drought stress to roots in leafy vegetables. HortTechnology, 22(1), 121–125. https://doi.org/10.21273/horttech.22.1.121
Maior, L. P. S., Neto, G. J. C., Azevedo, P. V. M., Jesus, L. C. C., Souza-Filho, A. N., Santos Júnior, C. J., Costa, J. G., Souza, M. A., Souza, E. C., Ferreira-Júnior, G. C., Pavão, J. M. S. J., Santos, A. F., & Matos-Rocha, T. J. (2022). Detection of enteropathogens and research of pesticide residues in Lactuca sativa from traditional and agroecological fairs. Brazilian Journal of Biology, 82, 1–7. https://doi.org/10.1590/1519-6984.237839
Maršić, N. K. (2017). 4. Lettuce and other leafy vegetables, Good Agricultural Practices for greenhouse vegetable production in the South East European countries. In Good Agricultural Practices for greenhouse vegetable production in the South East European countries (pp. 317–353). http://www.fao.org/3/a-i6787e.pdf
Michelon, N., Pennisi, G., Myint, N. O., Dall’Olio, G., Batista, L. P., Salviano, A. A. C., Gruda, N. S., Orsini, F., & Gianquinto, G. (2020). Strategies for improved yield and water use efficiency of lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy, 10(9), 1–14. https://doi.org/10.3390/agronomy10091379
Min, Q., Marcelis, L. F. M., Nicole, C. C. S., & Woltering, E. J. (2021). High Light Intensity Applied Shortly Before Harvest Improves Lettuce Nutritional Quality and Extends the Shelf Life. Frontiers in Plant Science, 12(January). https://doi.org/10.3389/fpls.2021.615355
Popsimonova, G., Benko, B., Karic, L., & Gruda, N. (2017). 7. Production systems: integrated and organic production, and soilless culture. In Good Agricultural Practices for greenhouse vegetable production in the South East European countries, 1. (pp. 220–239). FAO.
Rodriguez-Ortega, W. M., Martinez, V., Rivero, R. M., Camara-Zapata, J. M., Mestre, T., & Garcia-Sanchez, F. (2017). Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural Water Management, 183, 158–168. https://doi.org/10.1016/j.agwat.2016.07.014
Ronga, D., Setti, L., Salvarani, C., De Leo, R., Bedin, E., Pulvirenti, A., Milc, J., Pecchioni, N., & Francia, E. (2019). Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Scientia Horticulturae, 244(August 2018), 172–181. https://doi.org/10.1016/j.scienta.2018.09.037
Sabir, N., & Singh, B. (2013). Protected cultivation of vegetables in global arena: A review. Indian Journal of Agricultural Sciences, 83(2), 123–135.
Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., & Cesco, S. (2019). Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Frontiers in Plant Science, 10(July). https://doi.org/10.3389/fpls.2019.00923
Zandvakili, O. R., Barker, A. V., Hashemi, M., Etemadi, F., Autio, W. R., & Weis, S. (2019). Growth and nutrient and nitrate accumulation of lettuce under different regimes of nitrogen fertilization. Journal of Plant Nutrition, 42(14), 1575–1593. https://doi.org/10.1080/01904167.2019.1617313