PROTEIN QUALITY OF BREAD WHEAT

##plugins.themes.bootstrap3.article.main##

Desimir Knežević
Aleksandra Yu. Novoselskaya-Dragovich
Alexander M. Kudryavtsev
Aleksandar Paunović
Adriana Radosavac
Mirela Matković Stojšin
Svetlana Roljević Nikolić

Апстракт

The storage proteins content and their composition have important role in determination of protein quality in bread wheat. The aim of this work is analysis of gluten content, loaf volume and their relationship with gliadin and high molecular weight glutenin subunits in bread wheat. In investigation included 10 wheat genotypes grown in two vegetation seasons (2015/16 and 2016/17) with different climatic conditions. In the first year, the genotype G-3634-2 had the lowest dry gluten content (21.20%) and loaf volume (380 ml), while genotype G-3622-1, had the highest dry gluten content (26.54%) and loaf volume (500 ml). In second year, the lowest dry gluten content (23.44%) and the lowest loaf volume was in wheat G-3601-4 (400 ml), while in genotype G-3622-1, found the highest dry gluten content (29.86%) and loaf volume (540 ml). Wheat genotypes which possess glutenin subunits 2* encoded by Glu-A1b, 7+9 encoded by Glu-B1c, and 5+10 encoded by Glu-D1d. For improving bread making quality are necessary select and wheat genotypes in terms of gluten protein composition (gliadin and glutenin’s) and higher gluten content.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Рубрика
Articles

Референци

Amjid. M.R.. Shehzad. A.. Hussain. S.. Shabbir. M.A.. & Khan. M.R. (2013). A Comprehensive review on wheat flour dough rheology. Pakistan J. Food Sci.. 23(2). 105–123
Bellil. I.. Hamdi. O.. & Khelifi. D. (2014). Allelic variation in Glu-1and Glu-3 loci of bread wheat (Triticum aestivum ssp. aestivum L. em. Thell.) germplasm cultivated in Algeria. Cereal Research Communications. 42(4). 648–657.
Branlard. G.. Autran. J.C.. & Monneveux. P. (1989). High molecular weight glutenin subunit in durum wheat (T. durum). Theor. Appl. Genet.. 78. 353–358.
Dimitrijević. M.. Knežević. D.. & Petrović. S. (1998). Gliadin allele composition in relation to technological quality parameters and grain yield in wheat. Proc. of Int. Symp. ‘Breeding of Small Grains’. Kragujevac. 1. 15-21.
Goel. S.. Yadav. M.. Singh. K.. Ranjeet Singh Jaat. R.S.. & Singh. N. K. (2018). Exploring diverse wheat germplasm for novel alleles in HMW-GS for bread quality improvement. J. Food Sci. Technol.. 55(8). 3257–3262.
Gupta. R. B.. Singh. N. K.. & Shepherd. K. W. (1989). The cumulative effect of allelic variation in LMW and HMW glutenin subunits on physical dough properties in progeny of two bread wheats. Theor. Appl. Genet.. 77. 57–64.
Gupta. R.B.. & Shepherd. K.W. (1990). Two-steps one dimensional SDS-PAGE analysis of LMW subunits of glutenin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor. Appl. Genet.. 80. 65–74.
Jackson. E.A.. Holt. L.M.. & Payne. P.I. (1983). Characterization of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosome allocation of their controlling genes. Theor. Appl. Genet.. 66. 29–37.
Jackson. E.A.. Morel. M.H.. Sontage-Strohm. T.. Branlard. G.. Metakovsky. E.V.. & Redaelli. R. (1996). Proposal for combining classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.). J. Genetic Breeding. 50. 321–336.
He. Z.H.. Liu. L.. Xia. X.C.. Liu. J.J.. & Penâ. R.J. (2005). Composition of HMW and LMW glutenin subunits and their effects on dough properties. pan bread and noodle quality of Chinese bread wheats. Cereal Chem.. 82. 345–350.
Hlozáková. T.K.. Gregová. E.. & Gálová. Z. (2015). Genetic diversity of Glu-1 in European wheat genetic resources and varieties. J. Microbiol. Biotech. Food Sci.. (special issue 2). 4. 23–25.
Hurkman. W.J.. Tanaka. C.K.. William. H Vensel. W.H.. Thilmony. R.. & Altenbach. S.B. (2013). Comparative proteomic analysis of the effect of temperature and fertilizer on gliadin and glutenin accumulation in the developing endosperm and flour from Triticum aestivum L. cv. Butte 86. Proteome Science. 11:8. 2013. https://doi.org/10.1186/1477-5956-11-8
Javornik. B.. Metakovsky. E. V.. Sinkovič. T.. Novoselskaya A. Yu.. & Knežević. D. (1991): Gliadins in Yugoslav wheat cultivars. In Gluten proteins 1990. W. Bushuk. and R. Tkachuk (eds) American Association of Cereal Chemists. St. Paul. Minnesota. USA. 595–602.
Knežević. D.. Vapa. Lj.. & Javornik. B. (1993a). Gliadin polymorphism in bread wheat. Proc. of 8th International Wheat Genetic Simposium. 20-25. July. Bejing. China. 2. 1203–1207.
Knežević. D.. Šurlan-Momirović. G.. & Ćirić. D. (1993b). Allelic variation at Glu-1 loci in some Yugoslav wheat cultivars. Euphytica. 69(2). 89–95.
Knežević. D.. & Menkovska. M. (1994). The HMW glutenin subunits and Glu-1 allele compositions of Macedonian wheat varieties. Genetika. 26(1). 43-49.
Knežević. D.. Zečević. V.. & Pavlović. M. (1998a). Genetic similarity of wheat cultivar according to gliadin allele composition. Proc. of the 9th Int. Wheat Genetic Symp.. Saskatoon. Saskatchewan. Canada. 4. 178–180.
Knežević. D.. Zečević. V.. Dimitrijević. M.. & Petrović. S. (1998b). Gliadin alleles as markers of wheat resistance to low temperature. Proc. 2nd Balkan Symp. on Field Crops. Novi Sad. pp. 173–176.
Knežević. D.. Yurievna-Dragovich. A.. & Djukić. N. (2006). Polymorphism of Gli-B1 alleles in 25 Kragujevac’s wheat cultivars (Triticum aestivum L). Kragujevac J. Sci.. 28. 147–152.
Knežević. D.. Yurievna-Dragovich. A.. Zečević. V.. & Djukić. N. (2007). Polymorphism of GliA1 alleles in winter wheat cultivars (Triticum aestivum L). Kragujevac J. Sci.. 29(1). 139–147.
Knežević. D.. Rosandic. A.. Kondic. D.. Radosavac. A.. & Rajkovic. D. (2016). Impact of quality of grain wheat on food value. Növénytermelés. Suppl.. 65. 99–102.
Knežević. D.. Rosandic. A.. Kondic. D.. Radosavac. A.. & Rajkovic. D. (2017a). Effect of gluten formation on wheat quality. Columella – J. Agric. Environ. Sci.. 4(1). 169–174.
Knežević. D.. Zecevic. V.. Micanovic. D.. Menkovska. M. & Glumac. S. (2017b). Effect of environment to wheat quality properties. XII International Conference “Knowledge capital of the future “ knowledge without borders”. March 31-April 02 2017. Vrnjacka Banja. Serbia. Internetional Journal Institute of knowledge Management. 16(4). 609-614. Published (IKM) ed (R. Dimitrovski).
Knežević. D.. Dragovic Novoselskaya. A.Yu.. Kudryavcev. A.. Kondic. D.. Brankovic. G.. Srdic. S.. Zecevic. V.. & Mijatović. T. (2018). Allelic composition of HMW-glutenin protein and their relationship with quality of wheat. Agrofor International Journal. 3(2). 14–21.
Lafiandra. D.. Margiotta. B.. & Porceddu. E. (1987). A possible association between heading time and the Gli-A2 locus in bread wheat. Plant Breeding. 99. 333–335.
Laemmli. U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227. 680–685.
Lookhart. G.. Zečević. V.. Bean. S.R.. & Knežević. D. (2001). Breeding of Small Grains for Quality Improvement. In: Monograph Genetic and Breeding of Small Grains. (eds. S.Quarrie et al.) pp. 349–375.
Menkovska. M.. Knežević. D.. & Ivanoski. M. (1995). Kernel quality properties of some bread wheat varieties in connection with the composition of blocks of gliadins. Proceeding of papers at Meeting Faculity with farmers ’95. 3. 79–88.
Menkovska. M.. Knežević. D.. & Ivanoski. M. (1997). Wheat kernel quality properties in relation with the composition of HMW glutenin subunits. Proc. of First Croatian Congress of Cereal Technologists with international participation “BRAŠNO-KRUH ‘ 97” (ed. Žaneta Ugričić-Hardi). pp. 102–109.
Menkovska. M.. Žeželj. M.. & Knežević. D. (2000). Technological quality of milled flours of Macedonian wheat cultivars in relation to the composition of gluten proteins. Proc. of XIV Int. Congress” Cereal Bread 2000. pp. 40–43.
Menkovska. M.. Knežević. D.. & Ivanoski. M. (2002). Protein allelic composition. dough rheology. and baking characteristics of flour mill streams from wheat cultivars with known and varied baking qualities. Cereal Chemistry. 79(5). 720–725.
Metakovsky. E.V.. Wrigley. C.V.. Bekes. F.. & Gupta. R.B. (1990). Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust. J. Agric. Res.. 41. 289–306.
Metakovsky. E. V. (1991). Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. Journal of Genetics and Breeding. 45. 325–344.
Metakovsky. E.V.. Knežević. D.. & Javornik. B. (1991). Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica. 54. 285–295.
Metakovsky. E.V.. Pogna. N.E. . Biancardi. A.M.. & Redaelli. R. (1994). Gliadin allele composition of common wheat cultivars grown in Italy. J. Genet.&Breed.. 48. 55–66.
Metakovsky. E.V.. Branlard. G. (1998). Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor. Appl. Genet.. 96. 209–218.
Metakovsky. E.V.. Gomez. M.. Vasquez. J.F.. & Carrillo. M. (2000). High genetic diversity of Spanish common wheats as judged from gliadin allele. Plant Breeding. 119. 37–42.
Metakovsky. E.. Melnik. V.A.. Rodriguez-Quijano. M.. Upelniek. V.P.. & Carrillo. J.M. (2018). A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. Crop J.. 6. 629–641.
Metakovsky. E.. Pascual. L.. Vaccino. P.. Melnik. V.. Rodriguez-Quijano. M.. Popovych. Y.. Chebotar. S.. & Rogers.W.J. (2021). Heteroalleles in common wheat: multiple differences between allelic variants of the Gli-B1 Locus. Int. J. Mol. Sci.. 22. 1832. https://doi.org/10.3390/ ijms22041832
Naeem. H.A.. Paulon. D.. Irmak. S.. & MacRitchie. F. (2012). Developmental and environmental effects on the assembly of glutenin polymers and the impact on grain quality of wheat. J. Cer. Sci.. 56. 51–57.
Novoselskaya. A.YU. Metakovsky. E.V.. & Sozinov. A. A. (1983). Study of polymorphisms of gliadin in some wheat by using one- and two-dimensional electrophoresis. Citologija&Genetika. 17(5). 45–49. (in Russian)
Novoselskaya-Dragovich. A.Yu.. Knežević. D.. & Fisenko. A.V. (2005). Dynamics of genetic variation at gliadin-coding loci in bread wheat cultivars developed in small grains Research Center (Kragujevac) during last 35 years. Plant breed. and Seed Product.. Novi Sad. 11(1-4). 51-56.
NovoselskayaDragovich. A.Yu. (2015). Genetics and Genomics of Wheat: Storage Proteins. Ecological Plasticity. and Immunity. Genetika. 5(5). 568–583.
Payne. P.I.. & Lawrence. G.J. (1983). Catalogue of alleles for the complex gene loci. Glu-A1. Glu-B1. and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cer. Res Commun. 11. 29–35.
Payne. P. I.. 1(987). Genetics of wheat storage proteins and the effect of allelic variations on breadmaking quality. Ann. Rev. Plant Phisyol.. 38. 141–153.
Pogna. N.E.. Lafiandra. D.. Feillet. P.. & Autran. J.C. (1988). Evidence for a direct causal effect of low molecular weight glutenin subunits on gluten viscoelasticity in durum wheats. J. Cer. Sci.. 7. 211–214.
Shewry P.R. (2007). Improving the protein content and composi¬tion of cereal grain. J.Cer.Sci.. 46. 239–250.
Sozinov. A.A.. & Poperelya. F.A. (1980). Genetic Classifica- tion of Prolamins and Its Use for Plant Breeding. Annales de Technologie Agricole. 29. 229–245.
Tohver. M. (2007). High molecular weight (HMW) glutenin subunit composition of some Nordic and middle European wheats. Genet. Res. Crop. Evol.. 54. 67–81.
This. D.. Knežević. D.. Javornik. B.. Teulat. B.. Monneveux. P.. & Janjić. V. (2001). Genetic markers and their use in cereal breeding. In: Monograph Genetic and Breeding of Small Grains. (eds. S.Quarrie et all) pp.51–89.
Torbica. A.. Živančev. D.. & Knežević. D. (2006). Electrophoretic analysis of wheat gliadins in media of different acidity. Proceedings of Symposium with international participation „Improvement of agricultural production in Kosovo and Metohia“ 26-29. June 2006. Vrnjačka Banja. pp. 99–102.
Torbica. A.. Antov. M.. Mastilović. J.. & Knežević. D. (2007). The influence of changes in gluten complex structure on technological quality of wheat (Triticum aestivum L.). Food Research International 40. 1038–1045.
Torbica. A.. Živančev. D.. & Knežević. D. (2008). Gliadins in wheat cultivar grown under different ecological conditions. Int. Sci. Conference on Cereals - their products and processing. Debreceen: University of Debrecen. Centre of Agricultural. Sciences and Engineering Institute of Food Science. Quality. Assurance and Microbiology. pp. 27–28.
Triboi. E.. Martre. P.. & Triboi-Blondel. A.M. (2003). Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany. 54(388). 1731–1742.
Utebayev. M.. Dashkevich. S.. Bome. N.. Bulatova. K.. & Shavrukov. Y. (2019). Genetic diversity of gliadin-coding alleles in bread wheat (Triticum aestivum L.) from Northern Kazakhstan. PeerJ 7:e7082 http://doi.org/10.7717/peerj.7082
Vapa. Lj.. & Knežević. D. (1993). Aleli Gli-B1 i Gli-B2 lokusa kao markeri tehnološkog kvaliteta pšenice. Savremena poljoprivreda. 41(4). 26–29.
Vaiciulyte-Funk. L.. Juodeikiene. G.. Bartkiene. E. (2015). The relationship between wheat baking properties.specific high molecular weight glutenin componentsand characteristics of varieties. Zemdirbyste-Agriculture. 102(2). 229‒238.
Wrigley. C.W.. Bekes. F.. & Bushuk. W. (2006). Gluten: a balance of gliadin and glutenin. In: Wrigley C. Bekes F. Bushuk W (eds) Gliadin and glutenin. The unique balance of wheat quality. AACC Int Press. St Paul. pp 3–32.